Abstract

The Calvin cycle is the initial pathway of photosynthetic carbon fixation, and several of its reaction steps are suggested to exert rate-limiting influence on the growth of higher plants. Plastid fructose 1,6-bisphosphate aldolase (aldolase, EC 4.1.2.13) is one of the nonregulated enzymes comprising the Calvin cycle and is predicted to have the potential to control photosynthetic carbon flux through the cycle. In order to investigate the effect of overexpression of aldolase, this study generated transgenic tobacco (Nicotiana tabacum L. cv Xanthi) expressing Arabidopsis plastid aldolase. Resultant transgenic plants with 1.4-1.9-fold higher aldolase activities than those of wild-type plants showed enhanced growth, culminating in increased biomass, particularly under high CO₂ concentration (700 ppm) where the increase reached 2.2-fold relative to wild-type plants. This increase was associated with a 1.5-fold elevation of photosynthetic CO₂ fixation in the transgenic plants. The increased plastid aldolase resulted in a decrease in 3-phosphoglycerate and an increase in ribulose 1,5-bisphosphate and its immediate precursors in the Calvin cycle, but no significant changes in the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) or other major enzymes of carbon assimilation. Taken together, these results suggest that aldolase overexpression stimulates ribulose 1,5-bisphosphate regeneration and promotes CO₂ fixation. It was concluded that increased photosynthetic rate was responsible for enhanced growth and biomass yields of aldolase-overexpressing plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.