Abstract

The high frequency of modern travel has led to concerns about a devastating pandemic since a lethal pathogen strain could spread worldwide quickly. Many historical pandemics have arisen following pathogen evolution to a more virulent form. However, some pathogen strains invoke immune responses that provide partial cross-immunity against infection with related strains. Here, we consider a mathematical model of successive outbreaks of two strains-a low virulence (LV) strain outbreak followed by a high virulence (HV) strain outbreak. Under these circumstances, we investigate the impacts of varying travel rates and cross-immunity on the probability that a major epidemic of the HV strain occurs, and the size of that outbreak. Frequent travel between subpopulations can lead to widespread immunity to the HV strain, driven by exposure to the LV strain. As a result, major epidemics of the HV strain are less likely, and can potentially be smaller, with more connected subpopulations. Cross-immunity may be a factor contributing to the absence of a global pandemic as severe as the 1918 influenza pandemic in the century since. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.