Abstract

Cerebral amyloid angiopathy (CAA) is a process of unknown etiology characterized by amyloid deposition in the wall of small cerebral and meningeal blood vessels. CAA is also a feature of Alzheimer's disease (AD) and of a subgroup of elderly people. Alpha-1-Antichymotrypsin (ACT) is a serum glycoprotein frequently associated with vascular and senile plaque amyloid. The ACT gene is known to have a bi-allele polymorphism that causes a simple amino acid substitution. In an attempt to clarify the possible role of ACT polymorphism in AD and in cases of CAA, the ACT genotype was investigated in AD, CAA, and intellectually intact controls. Representative brain areas (cerebral cortex, hippocampus, putamen, white matter, and gyrus cinguli) from all cases were studied using classical histologic staining techniques (hematoxylin-eosin (HE), Mallory's thrichromic or alkaline congo red stain), and immunohistochemistry for tau and beta-amyloid proteins. There was a significantly increased T allele and TT genotype frequency in the CAA group, but not in the AD group, suggesting a role for the ACT genotype in the development of vascular lesions. The presence of the apolipoprotein E4 allele (ApoE4) did not correlate with the ACT-A allele, as previously reported, and appeared to be independent of the risk for developing AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.