Abstract

The role of terminal deoxynucleotidyl transferase (TdT) in the insertion of N regions into the junctional sites of immunoglobulin genes was investigated. Pre-B-cell lines capable of continuous rearrangement of immunoglobulin light-chain genes and differing only in the presence or apparent absence of TdT were derived by infecting cells with a TdT retroviral expression vector or a control vector. The cell lines were then superinfected with a retrovirus-based artificial immunoglobulin gene rearrangement substrate. The substrate was allowed to rearrange in the cell lines and the rearranged proviruses were rescued from the cell lines. Nucleotide sequence analysis of the V-J junctions of the proviral rearranged genes showed a fivefold greater frequency of N-region insertion in proviruses rescued from the TdT+ cell lines than in those rescued from the TdT- cell lines, so that at least 50% of the rearrangements that occurred in the presence of TdT had N regions. It is thus evident that TdT can stimulate N-region insertion, and the enzyme is presumably directly responsible for adding nucleotides at V-J and other immunoglobulin and T-cell receptor gene junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call