Abstract

BackgroundWhite matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs.MethodsThirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds.ResultsWe found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds.ConclusionsOur study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future.

Highlights

  • White matter hyperintensities (WMHs) on MRI scans are one of the hallmarks of cerebral small vessel disease (CSVD), which are associated with cognitive impairment, dementia, stroke and even death [1,2,3]

  • Abnormal diffusion metrics in WMHs Compared with Normal appearing white matter (NAWM), free water (FW) increased and apparent fiber density (AFD) decreased in WMHs

  • Tissue compartment FA (FAt) and Tissue compartment AD (ADt) were lower in WMHs than in NAWM, while Tissue compartment MD (MDt) and Tissue compartment RD (RDt) was higher

Read more

Summary

Introduction

White matter hyperintensities (WMHs) on MRI scans are one of the hallmarks of cerebral small vessel disease (CSVD), which are associated with cognitive impairment, dementia, stroke and even death [1,2,3]. CADASIL could serve as a unique model for investigating the pathological mechanisms of WMHs. Accumulating studies of CADASIL provide the evidence that WMHs are strongly related to increased extracellular fluid (ECF). White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.