Abstract

Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.