Abstract

The purpose of the present study was to identify any compensatory changes at the site of chronic compression of the spinal cord and neighboring segments. For this purpose, serial immunohistochemical and immunoblot analyses were performed for the expression levels of endogenous brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-3, and their receptors, trkB and trkC in 24 tip-toe walking Yoshimura mice (twy/twy) aged 12-24 weeks. The twy mouse exhibits spontaneous calcified deposits posteriorly at the C1-C2 level, compressing the spinal cord. Immunoreactivities for BDNF, NT-3, trkB and trkC were preferentially localized in the gray matter, particularly in the anterior horn cells. In 24-week-old twy mice with severe compression, expression levels of these neurotrophins at the site of maximal compression were significantly lower than at the less- or non-compressed sites. In contrast, the expression levels of BDNF, NT-3, trkB and trkC were significantly higher at the rostral and caudal sites immediately adjacent to the maximal compression site. No such changes were noted in 12-week-old twy mice or in control Institute of Cancer Research mice. Our results suggest that overexpression of BDNF, NT-3, trkB and trkC in motoneuron areas neighboring the site of mechanical compression may represent compensatory changes in response to the compromised neuronal function at the level of compression, and that these proteins possibly contribute to neuronal survival and plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.