Abstract

Changes at the level of gene expression are becoming an increasingly recognized component of the neuronal response to injury. We used Northern analysis and three in vivo models of central nervous system (CNS) injury in the rat to determine whether injury alters the expression of certain gene products related to cellular homeostasis. The three models included kainate (KA)-induced seizures, global ischemia, and lateral fluid percussion injury to the cerebral cortex. Animals were sacrificed at various times after injury, and total RNA was isolated from specific brain regions. Northern blots were hybridized with probes for calbindin-D28K, the 78 and 94 kDa glucose-regulated proteins (grp78, grp94), the inducible 72 kDa heat-shock protein (hsp72), and a control probe for the 18S ribosomal subunit. Results showed that mRNA for calbindin-D28K, grp78, and hsp72 increased in the hippocampus following seizures. Peak expression occurred 6–12 h after administration of KA, and returned towards baseline in most cases by 24 h. Changes in all four transcripts were seen in the hippocampus or cortex following global ischemia, although the return to baseline tended to exceed 24 h for the grps. In the trauma model, mRNA for hsp72 was increased in the cortex ipsilateral to the impact 12 h after injury. These results expand the repertoire of known changes in mRNA expression following CNS injury. The increases in hsp72 and grps indicate the occurence of a generalized stress response. Furthermore, given the evidence that grp78 and grp94 are induced by calcium ionophores in vitro, and the potential role of calbindin-D28K in buffering cytoplasmic calcium, the changes observed in this study may represent a cellular response to perturbed calcium homeostasis that is known to occur in acute CNS injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.