Abstract

It is thought that environmental pollutants, such as polycyclic aromatic hydrocarbons (PAH), contribute to human breast tumorigenesis, yet their roles remain incompletely elucidated. The prototypical PAH 7,12-dimethylbenz(alpha)anthracene (DMBA) specifically and effectively induces mammary tumor formation in rodent models. In an attempt to explore the molecular mechanisms by which PAH initiates and promotes mammary tumorigenesis, we examined the expression of several cell cycle regulators in rat mammary tumors induced by DMBA. Expression of cyclin D1, murine double minute-2 (MDM2), and Akt was up-regulated in tumors in comparison to normal mammary glands, as indicated by RT-PCR, Western blot analysis, and immunohistochemical staining. Expression of p27Kip1 protein was also elevated in the tumors with increased cytoplasmic localization. However, RB protein remained hyperphosphorylated. To directly test the effects of DMBA, the MCF-7 human breast cancer cells were treated. DMBA induced MDM2 expression in a dose- and time-dependent fashion in the MCF-7 cells, and this activation appeared to be p53 dependent. These data suggest that activation of cyclin D1, MDM2, and AKT as well as increased expression and cytoplasmic localization of p27Kip1 may play a role in this model of environmental pollutant-induced mammary tumorigenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call