Abstract
Hyperoxic reoxygenation following hypoxia increases the expression of inflammatory genes in the neonatal mouse brain. We have therefore compared the temporal profile of 44 a priori selected genes after hypoxia and hyperoxic or normoxic reoxygenation. Postnatal day 7 mice were subjected to 2 h of hypoxia (8% O2) and 30 min reoxygenation with 60% or 21% O2. After 0 to 72 h observation, mRNA and protein were examined in the hippocampus and striatum. There were significantly higher gene expression changes in six genes after hyperoxic compared to normoxic reoxygenation. Three genes had a generally higher expression throughout the observation period: the inflammatory genes Hmox1 (mean difference: 0.52, 95% confidence interval (CI): 0.15-1.01) and Tgfb1 (mean difference: 0.099, CI: 0.003-0.194), and the transcription factor Nfkb1 (mean difference: 0.049, CI: 0.011-0.087). The inflammatory genes Cxcl10 and Il1b, and the DNA repair gene Neil3, had a higher gene expression change after hyperoxic reoxygenation at one time point only. Nineteen genes involved in inflammation, transcription regulation, apoptosis, angiogenesis, and glucose transport had significantly different gene expression changes with time in all intervention animals. We confirm that hyperoxic reoxygenation induces a stronger inflammatory gene response than reoxygenation with air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.