Abstract

Chronic renal failure markedly accelerates atherosclerosis in apolipoprotein-E-deficient mice, but the mechanism is unknown. The recruitment of inflammatory cells in the arterial wall by vascular adhesion molecules plays a key role in the formation of classical atherosclerosis. This study examines whether the expression of vascular adhesion molecules is increased in uremic atherosclerosis. Uremia was induced by 5/6 nephrectomy; control mice were sham-operated. After 2 wk of uremia, no lesion formation could be demonstrated in uremic or control mice. After 12 wk, aortas from uremic mice had a 9.8-fold increase of the aortic plaque area fraction compared with control mice (P < 0.0001). The aortic expression of intercellular adhesion molecule-1 (ICAM-1) mRNA in uremic mice was 215 +/- 31% (P < 0.05) and 243 +/- 55% (P < 0.05) of that in controls after 2 and 12 wk, respectively (n = 9 x 4). In contrast, aortic expression of vascular cell adhesion molecule-1 (VCAM-1) mRNA in uremic mice was unchanged after 2 wk but increased to 237 +/- 40% (P < 0.01) of that in control mice after 12 wk. On immunohistochemistry of aortas from uremic mice, ICAM-1 was predominantly present in endothelial cells both in nonlesioned and lesioned aortas, whereas VCAM-1 was predominantly present in the medial smooth muscle cell layer in lesioned aortas. The plasma concentration of soluble ICAM-1 (sICAM-1) (but not of sVCAM-1) was slightly elevated after 2 wk of uremia. In contrast, both sICAM-1 and sVCAM-1 plasma concentrations were markedly higher in uremic than control mice after 12 wk. These results suggest that uremic atherosclerosis is preceded by an upregulation of ICAM-1 expression in arterial endothelium and that formation of early uremic lesions is accompanied by upregulation of VCAM-1 expression in the medial smooth muscle cell layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.