Abstract

In an attempt to investigate the underlying mechanisms of cancer-induced bone pain, we investigated the presence of acid-sensing ion channel 3 (ASIC3) in dorsal root ganglia (DRG) neurons in an animal model of bone cancer pain. Forty-five female Sprague-Dawley rats were randomized into three groups: sham-operation group (sham), cancer-bearing animals killed after 7 days (C7), and cancer-bearing animals killed after 14 days (C14). After establishment of the bone cancer pain model, pain-related behavioral tests were performed to determine the paw withdrawal threshold of mechanical allodynia and thermal hyperalgesia, respectively. Reverse transcription-PCR, western blot, and immunofluorescence were used to determine mRNA and protein expression of ASIC3 in ipsilateral and contralateral lumbar 4-5 DRG neurons. Compared with the sham group, paw withdrawal threshold of mechanical allodynia and thermal hyperalgesia in the C14 group showed a significant decrease (P<0.01) from postoperation day 7 to the termination of the experiment. Compared with the sham group, the ipsilateral but not contralateral mRNA of ASIC3 was upregulated in the C14 group. Meanwhile, the ipsilateral protein expression of ASIC3 was increased in the C7 and C14 group compared with the sham group. Double-labeled immunofluorescence showed that ASIC3 and isolectin-B4 (IB4)-colocalized small DRG neurons in the C14 group were more than that in the sham group. Furthermore, we also found that there were more ASIC3 and neurofilament 200 (NF200)-colocalized DRG neurons in the C14 group than in the sham group. The upregulation of mRNA and protein levels of ASIC3 suggested its potential involvement in the development and maintenance of cancer-induced bone pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.