Abstract

Chronic renal failure (CRF) and hemodialysis (HD) accumulate an inflammatory milieu, contributing to increased systemic and airway oxidative stress that may lead to lung damage. This study was designed to assess exhaled hydrogen peroxide (H2O2), lung function and whole blood chemiluminescence in HD and CRF patients and healthy controls. The study included 59 patients (Polyamide STM or Hemophan membranes--19, cuprophane--16, hemodiafiltration--14, continuous ambulatory peritoneal dialysis--10), 16 CRF and 16 healthy controls. The assessment of lung function included FVC (forced vital capacity), FEV1 (forced expiratory volume in the first second) and DLCOc (single breath CO diffusing capacity). Exhaled H2O2 was determined fluorometrically and resting and n-formyl-methionyl-leucyl-phenylalanine (fMLP) luminol-dependent whole blood chemiluminescence (LBCL) were measured simultaneously. Only cuprophane HD patients presented decreased lung function (FVC 63.8+/-17.4%, FEV1 55.9+/-20.3 and DLCOc 72.1+/- 9.3 % of predicted; p<0.05 vs. controls). These patients exhaled the highest H2O2 levels in comparison to CRF (p<0.01): median 0.36 microM (range R: 0.09-0.56 microM) and controls (p<0.05): 0.17 microM (0.2-17.8 microM). These levels were not decreased during the HD session: preHD 1.25 microM (0.2-16.5 microM) and postHD 1.3 microM (0.2-17.8 microM). As a marker of systemic oxidative stress, fMLP-induced LBCL (total light emission) was increased in these patients (1570.6 aUxs/10(4) phagocytes; R: 274.2-8598.9) and in the CRF group (2389.4 aUxs /10(4) phagocytes; R: 491.5- 6184; p<0.05 vs. controls). Other patient groups did not express elevated LBCL and revealed decreased exhaled H2O2 after a session. An increased oxidative burden in the lungs may contribute to functional lung impairment in patients dialyzed with a cellulose membrane. Biocompatible dialysis with other modalities might reduce airway-borne oxidative stress and is not related with lung damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.