Abstract

Esters and higher alcohols produced by yeast during the fermentation of wort have the greatest impact on the smell and taste of beer. Alcohol acetyltransferase, which is mainly encoded by the ATF1 gene, is one of the most important enzymes for acetate ester synthesis. Cytosolic branched-chain amino acid aminotransferase, on the other hand, which is encoded by the BAT2 gene, plays an important role in the production of branched-chain alcohols. The objective of this study is to construct engineered brewer’s yeast strains that produce more acetate esters and less higher alcohols. Industrial brewer’s yeast strain S5 was used as the parental strain to construct ATF1 overexpression and BAT2 deletion mutants. The engineered strains S5-2 and S5-4, which feature partial BAT2 allelic genes replaced by the constructed ATF1 overexpression cassette, were obtained. The ester production of the engineered strains was observed to increase significantly compared with that of the parental cells. The concentrations of ethyl acetate produced by the engineered strains S5-2 and S5-4 increased to 78.88 and 117.40 mg L−1, respectively, or about 7.7-fold and 11.5-fold higher than that produced by parental S5 cells. The isoamyl acetate produced by S5-2 and S5-4 also increased to 5.14 and 9.25 mg L−1, respectively; by contrast, no isoamyl acetate was detected in the fermentation sample of the parental strain S5. Moreover, S5-2 and S5-4, respectively, produced about 65 and 51 % of higher alcohols produced by the parental strain. The increase in acetate ester content and decrease in higher alcohol concentration shown by the engineered brewer’s yeast strains at the end of fermentation process indicate that the new strains are useful in future developments in the wheat beer industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.