Abstract
IntroductionMany studies have reported that human-induced pluripotent stem (hiPS)/embryonic stem (hES) cells have an exceptional ability to repair damaged DNA. Moreover, unlike differentiated cells, hES cells have features and mechanisms such as apoptosis-prone mitochondria, which prevent any changes in genetic information caused by DNA damage to be transmitted to their descendants. Type-A (dark) spermatogonia and cancer stem cells are thought to be dormant. However, hiPS/hES cells, the so-called stem cells used in regenerative medicine, generally have a high proliferative capacity. This suggests that in these cells, oxidative DNA damage associated with vigorous proliferation and DNA scission associated with replication occur frequently. Although pluripotency according to change of genomic structure is well studied, the change of DNA repair through reprogramming has not been well studied.MethodsWe analyzed the expression of DNA repair-related genes in hiPS cells using microarray and western blotting analyses and assessed changes in PARP activity through reprogramming.ResultsThrough reprogramming, hiPS cells were found to upregulate poly (ADP-ribose) polymerase (PARP) activity and genes regulating homologous recombination (HR). Simultaneously, the expression level of genes involved in non-homologous end joining (NHEJ) was not high, suggesting that at least at the gene expression level, frequently occurring DNA scission is preferentially dealt with via HR instead of NHEJ. Also, reflecting the high proliferative activity, genes related to mismatch repair (MMR) were upregulated through reprogramming. Conversely, error-prone polymerase was downregulated through reprogramming. These are also likely to be the mechanisms preventing changes in genetic information.ConclusionsHigh PARP activity and HR-related gene expression in hiPS cells were achieved through reprogramming and likely facilitate precise genome editing in these cells in exchange for a high possibility of cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.