Abstract

While β-adrenergic receptor (β-AR) stimulation ensures adequate cardiac output during stress, it can also trigger life-threatening cardiac arrhythmias. We have previously shown that proarrhythmic Ca2+ waves during β-AR stimulation temporally coincide with augmentation of reactive oxygen species (ROS) production. In this study, we tested the hypothesis that increased energy demand during β-AR stimulation plays an important role in mitochondrial ROS production and Ca2+-wave generation in rabbit ventricular myocytes. We found that β-AR stimulation with isoproterenol (0.1 μM) decreased the mitochondrial redox potential and the ratio of reduced to oxidated glutathione. As a result, β-AR stimulation increased mitochondrial ROS production. These metabolic changes induced by isoproterenol were associated with increased sarcoplasmic reticulum (SR) Ca2+ leak and frequent diastolic Ca2+ waves. Inhibition of cell contraction with the myosin ATPase inhibitor blebbistatin attenuated oxidative stress as well as spontaneous SR Ca2+ release events during β-AR stimulation. Furthermore, we found that oxidative stress induced by β-AR stimulation caused the formation of disulfide bonds between two ryanodine receptor (RyR) subunits, referred to as intersubunit cross-linking. Preventing RyR cross-linking with N-ethylmaleimide decreased the propensity of Ca2+ waves induced by β-AR stimulation. These data suggest that increased energy demand during sustained β-AR stimulation weakens mitochondrial antioxidant defense, causing ROS release into the cytosol. By inducing RyR intersubunit cross-linking, ROS can increase SR Ca2+ leak to the critical level that can trigger proarrhythmic Ca2+ waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call