Abstract

Despite the recent development of immunotherapies that target programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) treatment, these therapies are less effective in NSCLC patients with epidermal growth factor receptor (EGFR) mutations. However, the molecular mechanisms underlying this lower efficacy of immunotherapies in EGFR mutant lung cancers are still unclear. In this study, we analyzed PD-L1 protein expression in lung cancer cell lines with EGFR mutations prior to and after acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs). We found that parental lung cancer cell lines harboring EGFR mutations showed negative (PC9 and H3255 cells) and positive (HCC827 cells) staining for PD-L1 by immunohistochemistry. Comparing PD-L1 expression between EGFR-TKI resistant cell lines and their parental cells, we found that increased phosphorylation of EGFR was related to increased expression of PD-L1. Increased phosphorylation of EGFR was accompanied by the T790M secondary mutation. Acquired resistance cells with MET amplification or EGFR loss both showed decreased phosphorylation of EGFR and decreased PD-L1 expression. Our results indicate that lung cancer cell lines with EGFR mutations (parental cells) do not harbor high PD-L1 protein expression. In addition, EGFR phosphorylation affects PD-L1 expression after acquisition of resistance to EGFR-TKIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.