Abstract

Stimulated anti-Stokes Raman scattering in molecular hydrogen allows for the generation of continuously tunable narrow-bandwidth radiation down to the transmission limit of vacuum ultraviolet (VUV) window materials. Simultaneous irradiation of UV-pump radiation (in this application, dye laser radiation of wavelength lambda = 372 nm) and of radiation whose wavelength corresponds to the first Stokes component allows a considerable increase in efficiency-by nearly 2 orders of magnitude in the far VUV. The additional Stokes radiation is generated in a simple manner during the passage of the unfocused pump radiation through a high-pressure Raman cell that precedes the VUV Raman cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.