Abstract

Artificial Bee Colony (ABC) is a powerful metaheuristic algorithm inspired by the behavior of a honey bee swarm. ABC suffers from poor exploitation and, in some cases, poor exploration. Ant Colony Optimization (ACO) is another metaheuristic algorithm that uses pheromones as a guide for an ant to find its way. This study used a pheromone technique from ACO on ABC to enhance its exploration and exploitation. The performance of the proposed method was verified through twenty instances from TSPLIB. The results were compared with the original ABC method and showed that the proposed method leverages the performance of ABC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.