Abstract

We report on an efficient rf-induced forced evaporative cooling of an ensemble of {sup 87}Rb atoms in state |F=2,m{sub F}=2> magnetically trapped in a quadrupole-Ioffe configuration trap. The cigar-shaped trap is oriented with its weak confining axis along the direction of gravity leading to, first, a significant separation of the trapping positions for low-field-seeking atoms with different m{sub F} value and, second, a reduced resonance volume for rf-induced evaporation confined to a small region around the lower tip of the cigar-shaped ensemble. This results in an enhancement of the evaporation efficiency {alpha}{identical_to}dlnT/(dlnN) due to either reduced or completely vanishing scattering events between cooled and evaporated atoms. We present data illustrating this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.