Abstract

Abstract This study evaluates wintertime drought and pluvial risk over California through a Bayesian analysis of the upper and lower quartile of PRISM-based precipitation from 1901 to 2015. Risk is evaluated for different time windows to estimate the impact of interannual and decadal-to-multidecadal Pacific and Atlantic variability [positive and negative phases of ENSO, Pacific decadal oscillation (PDO), and Atlantic multidecadal oscillation (AMO)]. The impact of increasing trends in global sea surface temperature (SST) on drought and pluvial risk is also examined with idealized experimental runs from three climate models [GFDL Atmospheric Model version 2.1 (AM2.1), CCM3, and GFS]. The results show that the influence of oceanic conditions on drought risk in California is significant but has changed with higher risk in the last half century, especially in Southern California. The influence of oceanic conditions on pluvial risk has also been significant, especially during the warm phase of the Pacific Ocean, but increases over the last century are small compared to drought. Results from the idealized climate model experiments show that natural variability likely played a major role in the observed changes in risk, with the global SST increasing trend possibly tempering the increases regionally but not significantly over California. Despite evolving preferential oceanic conditions for a pluvial event during the 2015/16 winter (positive phase of ENSO and PDO), California received an 11% winter precipitation surplus, which was not sufficient for drought recovery. The seasonal and longer-term outlook for negative phases of ENSO and PDO implies that drought risk will be elevated in Southern California for the next decade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call