Abstract

Background and aimWe sought to identify mechanisms of beta cell failure in genetically obese mice. Little is known about the role of pancreatic innervation in the progression of beta cell failure. In this work we studied adrenergic innervation, in view of its potent inhibitory effect on insulin secretion. We analyzed genetically obese ob/ob and db/db mice at different ages (6- and 15-week-old), corresponding to different compensatory stages in the course of beta cell dysfunction. 15 week-old HFD mice were also studied. Methods and resultsAll mice were characterized by measures of plasma glucose, insulin, and HOMA. After perfusion, pancreata were dissected and studied by light microscopy, electron microscopy, and morphometry. Insulin, Tyrosine Hydroxylase-positive fibers and cells and Neuropeptide Y-positive cells were scored by immunohistochemistry.Islets of obese mice showed increased noradrenergic fiber innervation, with significant increases of synaptoid structures contacting beta cells compared to controls. Noradrenergic innervation of the endocrine area in obese db/db mice tended to increase with age, as diabetes progressed. In ob/ob mice, we also detected an age-dependent trend toward increased noradrenergic innervation that, unlike in db/db mice, was unrelated to glucose levels. We also observed a progressive increase in Neuropeptide Y-immunoreactive elements localized to the islet core. ConclusionsOur data show increased numbers of sympathetic nerve fibers with a potential to convey inhibitory signals on insulin secretion in pancreatic islets of genetically obese animals, regardless of their diabetic state. The findings suggest an alternative interpretation of the pathogenesis of beta cell failure, as well as novel strategies to reverse abnormalities in insulin secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.