Abstract

Brain anatomical abnormalities as well as cognitive and emotional processing deficits have been reported for the prefrontal cortex in bipolar disorder, which are in part attributable to cellular and laminar abnormalities in postsynaptic protein expression. A kinase anchoring protein (AKAP) 5/79 plays a key role in postsynaptic signalling of excitatory synapses. We aimed to reveal if the cellular expression of AKAP5/79 protein is altered in the anterior cingulate cortex and the dorsolateral prefrontal cortex in bipolar disorder. Ten subjects with bipolar disorder and ten control cases were investigated by use of immunohistochemical and morphometric techniques. Compared with controls in subjects with bipolar disorder, the numerical density of AKAP5-expressing neurons was significantly increased in the left (p = 0.002) and right (p = 0.008) anterior cingulate cortex. Layer-specific counting revealed that left side layers II (p = 0.000), III (p = 0.001) and V (p = 0.005) as well as right side layers III (p = 0.007), IV (p = 0.007) and V (p = 0.004) had significantly increased AKAP5-positive cell densities in bipolar disorder. In contrast, no statistically significant differences were found for the dorsolateral prefrontal cortex. However, we observed a more intense intraneuronal immunostaining in both prefrontal areas in bipolar disorder patients. Elevated cell numbers and increased intracellular expression of AKAP, together with the altered expression patterns of most intracellular interaction partners of this protein in bipolar disorder as known from the literature, might point to disease-related abnormalities of the AKAP-associated signalosome in prefrontal cortex neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call