Abstract
Temperature variability in soils is expected to increase due to the more frequent occurrence of heat waves, putting species under thermal stress. In addition, organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are released into the environment due to anthropogenic activities. Both stressors negatively impact terrestrial organisms and may interact with each other. Here, we subjected the soil living enchytraeid, Enchytraeus albidus, to combined exposure to phenanthrene (PHE; 0, 10, 20, 40, and 80 mg kg−1 dry soil) and a range of temperature treatments (constant temperature (CT): 10, 15 and 20 °C; different mean temperature with the same daily temperature fluctuation (DTF-5): 10 ± 5, 15 ± 5 and 20 ± 5 °C; daily temperature fluctuation with the same mean, but different amplitudes (DTF-A): 20, 20 ± 2, 20 ± 5 and 20 ± 7 °C). We measured internal PHE concentration in adults and found that an increase in mean temperature significantly increased the internal PHE concentration. The production of juveniles was measured using a standardized test. We found a synergistic interaction between the temperature amplitude (DTF-A treatments) and PHE on the reproduction of E. albidus. The EC50 of reproduction decreased with increasing amplitude. These results show that the negative effects of PHE on E. albidus can be magnified if stressful temperatures are reached (although briefly) during diurnal fluctuations of soil temperature. Our results highlight the importance and inclusion of extreme thermal events in the risk assessment of pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.