Abstract

Topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) photodynamic therapy (PDT) of skin lesions is an accepted treatment for skin tumours but success rates need improvement. The effectiveness of PDT is influenced by availability of oxygen. The aim of this study was to demonstrate, in normal skin, whether a decrease in skin oxygen tension reduces the photodynamic reaction (PDR); and whether the addition of topical hydrogen peroxide can reverse the effect. Topical MAL and red light were administered to the inner forearms of 40 healthy volunteers. Skin oxygen availability was lowered during the illumination phase of the PDT, by applying blanching pressure with a plastic slide. Topical hydrogen peroxide was applied under the pressure slide, immediately prior to illumination, to reverse the effect. Erythema was assessed by naked eye and laser Doppler perfusion imaging (LDPI), at baseline and at 1, 5, 24 and 48 h following illumination. Decreasing oxygen availability by pressure altered the PDR with a larger number of subjects (17.5%) not demonstrating any visible erythema at any time point after plastic slide pressure compared to a PDR Control site (7.5%). The addition of topical hydrogen peroxide during pressure application, restored the number of subjects showing no visible erythema compared to that of PDR Control. LDPI data showed that there was a decrease in mean perfusion after plastic slide pressure when comparing the change from baseline to 24 h (P < 0.05) with the PDR Control. The addition of hydrogen peroxide not only restored but also increased the mean perfusion compared to that of PDR Control when comparing the change from baseline to 5 h and the change from baseline to 24 h (P < 0.001). Increasing oxygen availability increased the PDR in normal skin. The possibility that addition of topical hydrogen peroxide to PDT protocols for non-melanoma skin cancer may increase reactivity and, thus, be relevant for outcomes warrants further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.