Abstract

A catalyst series consisting in platinum nanoparticles photodeposited on pure titania and on W/Ti mixed oxides, these latter prepared by the sol-gel method, were tested in the hydrogenation of 4-nitrostyrene. A remarkable increase in the reaction rate occurred when the catalyst support contained tungsten, with a parallel boosting in the selective reduction of the nitro group. With the selective W-containing catalysts, the reaction proceeded at constant rate (zero order rate law), while the tungsten-free catalyst showed a rate-dependence on the 4-nitrostyrene concentration (positive order reaction). The presence of tungsten in the support is beneficial not only because a higher surface area is obtained, thanks to the stabilization of anatase owing to the presence of tungsten, but also because it allows the photodeposition of smaller, better dispersed platinum particles, on which the adsorption of the aromatic part of 4-nitrostyrene is less favored. Tungsten not only substitutes titanium in the titania lattice, as revealed by HAAF-STEM analysis, but it is also present as WOx species partly covering the Pt nanoparticles photodeposited on the mixed oxide support, as revealed by an in depth distribution XPS analysis. This accounts for the progressively lower performance observed with increasing tungsten content in the catalysts, the highest conversion and selective hydrogenation of the 4-nitrostyrene nitro group having been achieved on the catalyst with a 1% W/Ti molar ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.