Abstract

With increasing concerns about energy and environmental issues, lithium ion batteries are now penetrating into large-scale applications such as electric vehicles. As an electrode reaction process, it is generally believed that two-phase reaction with structural rearrangement and large lattice mismatch impedes high-rate capability. However, LixFePO4, with its two-phase reaction between LiFePO4 and FePO4, exhibits an exceptional high-rate performance. In this article, after confirming the existence of a single-phase reaction even under moderate rates, we demonstrate an approximately 2 orders of magnitude increase of the conductivity for the quenched intermediate Li0.6FePO4. In addition to the widely accepted strain relaxation effect at the two-phase interface, the dramatically increased conductivity due to polaron/lithium carrier density increase in the intermediate phase should be highlighted as an important factor to accelerate the electrode reaction of olivine LixFePO4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call