Abstract

Adeno-associated virus (AAV) undergoes preferential Rep-mediated integration into the AAVS1 region of human chromosome 19 during latent infection, at least in highly-selected cell cultures. However, integration at the level of the whole eukaryotic genome in unselected cells has not yet been monitored for AAV as it has been for retro- and lentiviruses. Here we have used ligation-mediated PCR (LMPCR) to monitor the formation of AAV-chromosome junctions within unselected genomic DNA after infection. Our analyses show that, in the absence of selection, the complexity of junction formation is much greater than for selected cells. Sequencing of more than 50 authentic LMPCR clones showed that AAV formed junctions with many different chromosomal sites via DNA micro-homologies that frequently involved GGTC motifs located within the AAV p5 element. One site at position 280 was preferred. Even greater complexity was found when unselected junctions identified by LMPCR were analysed by direct PCR amplification and cloning of genomic DNA. No clones containing AAV-AAVS1 chromosome 19 junctions were identified among the LMPCR clones, although they were readily obtained using chromosomal PCR primers, suggesting that junctions with AAVS1 constituted only a small portion of the total. Thus, we have identified an additional means by which AAV sequences may join to human chromosomes, although the detailed molecular mechanisms remain to be elucidated. These data may have implications for the design of new-generation AAV vectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.