Abstract

Task-specific gait training is recommended to improve locomotor function after stroke. Our objective was to determine the effects of a forced-rate aerobic exercise intervention on gait velocity and biomechanics in the absence of task-specific gait training. Individuals with chronic stroke ( N = 14) underwent 24 sessions of forced-rate aerobic exercise, at a targeted aerobic intensity of 60%-80% of their heart rate reserve. Change in comfortable walking speed in addition to spatiotemporal, kinematic, and kinetic variables were measured using three-dimensional motion capture. Overground walking capacity was measured by the 6-min walk test. To determine gait biomechanics associated with increased walking speed, spatiotemporal, kinematic, and kinetic variables were analyzed separately for those who met the minimal clinically important difference for change in gait velocity compared with those who did not. Participants demonstrated a significant increase in gait velocity from 0.61 to 0.70 m/sec ( P = 0.004) and 6-min walk test distance from 272.1 to 325.1 meters ( P < 0.001). Those who met the minimal clinically important difference for change in gait velocity demonstrated significantly greater improvements in spatiotemporal parameters ( P = 0.041), ground reaction forces ( P = 0.047), and power generation ( P = 0.007) compared with those who did not. Improvements in gait velocity were accompanied by normalization of gait biomechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.