Abstract

Growth of Kirsten sarcoma virus-transformed BALB 3T3 (Ki-3T3) cells in the presence of dibutyryl cyclic AMP (dbcAMP) resulted in alteration of morphology, inhibition of growth, and increased collagen synthesis as measured by incorporation of 14C-proline into collagenase-digestible protein. There was an increase in incorporation of 14C-proline into collagen when expressed not only as dpm per μg DNA or protein, but also as the relative rate of collagen synthesis compared to total cellular protein synthesis, which suggests that an alteration in amino acid transport cannot totally account for the increased incorporation into collagen. The three properties studied were all affected over a concentration range of 0.10 to 1.0 mM dbcAMP, but each had a slightly different dose-response curve. At 0.5 mM dbcGMP or sodium butyrate, there was no affect on growth, morphology, or the relative rate of collagen synthesis indicating specificity for the dibutyryl analog of cAMP. Growth of the parent line, BALB 3T3, was inhibited by 0.5 mM dbcAMP, but the relative rate of collagen synthesis did not increase. These results suggest that although growth, morphology, and collagen synthesis are altered in transformed cells so that they more closely resemble those of the parent line, each property may be regulated independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call