Abstract

The air in an operating room becomes more contaminated as the occupancy of the room increases. Individuals residing in a room can potentially emit infectious agents. In order to inhibit and better understand the epidemiology of surgical site infections, it is important to develop procedures to track room occupancy level and respiration. Exhaled CO2 provides a respiratory byproduct that can be tracked with IR light and is associated with human occupancy. Exhaled CO2 can also be used as an indirect measure of the potential release and level of infectious airborne agents. We show that non-dispersive infrared CO2 sensors can be used to detect CO2 in operating room air flow conditions of 20 air changes per hour and a positive pressure of 0.03 in. H2O. The CO2 concentration increased consecutively for occupation levels of one to four individuals, from approximately 65 ppm above the background level when one individual occupied the operating room for twenty minutes to approximately 300 ppm above the background when four individuals were present for twenty minutes. The amount of CO2 detected increases as the number of occupants increase, the activity level increases, the residency time increases and when the ventilation level is reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.