Abstract

AbstractIn recent years, biochar has been discussed as an opportunity for carbon sequestration in arable soils. Field experiments under realistic conditions investigating the CO2 emission from soil after biochar combined with fertilizer additions are scarce. Therefore, we investigated the CO2 emission and its 13C signature after addition of compost, biogas digestate (originating from C4 feedstock) and mineral fertilizer with and without biochar (0, 3, 10, 40 Mg biochar/ha) to a sandy Cambisol in Northern Germany. Biomass residues were pyrolized at ~650°C to obtain biochar with C3 signature. Gas samples were taken biweekly during the growing season using static chambers three years after biochar substrate addition. The CO2 concentration and its δ13C isotope signature were measured using a gas chromatograph coupled to an isotope ratio mass spectrometer. Results showed increased CO2 emission (30%–60%) when high biochar amount (40 Mg/ha) was applied three years ago together with mineral fertilizer and biogas digestate. On average, 59% of the emitted CO2 had a C3 signature (thus, deriving from biochar and/or soil organic matter), independent of the amount of biochar added. In addition, our results clearly demonstrated that only a small amount of released CO2 derived from biochar. The results of this field experiment suggest that biochar most likely stimulates microbial activity in soil leading to increased CO2 emissions derived from soil organic matter and fertilizers mineralization rather than from biochar. Nevertheless, compared to the amount of carbon added by biochar, additional CO2 emission is marginal corroborating the C sequestration potential of biochar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call