Abstract

The exact contribution of neutrophils to post-resuscitative brain damage is unknown. We aimed to investigate whether neutrophil extracellular trap (NET) formation in the early phase after return of spontaneous circulation (ROSC) may be associated with poor 30 day neurologic function in cardiac arrest survivors. This study prospectively included adult (≥18 years) out-of-hospital cardiac arrest (OHCA) survivors with cardiac origin, who were subjected to targeted temperature management. Plasma levels of specific (citrullinated histone H3, H3Cit) and putative (cell-free DNA (cfDNA) and nucleosomes) biomarkers of NET formation were assessed at 0 and 12 h after admission. The primary outcome was neurologic function on day 30 after admission, which was assessed using the five-point cerebral performance category (CPC) score, classifying patients into good (CPC 1–2) or poor (CPC 3–5) neurologic function. The main variable of interest was the effect of H3Cit level quintiles at 12 h on 30 day neurologic function, assessed by logistic regression. The first quintile was used as a baseline reference. Results are given as crude odds ratio (OR) with 95% confidence interval (95% CI). Sixty-two patients (79% male, median age: 57 years) were enrolled. The odds of poor neurologic function increased linearly, with 0 h levels of cfNDA (crude OR 1.8, 95% CI: 1.2–2.7, p = 0.007) and nucleosomes (crude OR 1.7, 95% CI: 1.0–2.2, p = 0.049), as well as with 12 h levels of cfDNA (crude OR 1.6, 95% CI: 1.1–2.4, p = 0.024), nucleosomes (crude OR 1.7, 95% CI: 1.1–2.5, p = 0.020), and H3Cit (crude OR 1.6, 95% CI: 1.1–2.3, p = 0.029). Patients in the fourth (7.9, 95% CI: 1.1–56, p = 0.039) and fifth (9.0, 95% CI: 1.3–63, p = 0.027) H3Cit quintile had significantly higher odds of poor 30 day neurologic function compared to patients in the first quintile. Increased plasma levels of H3Cit, 12 h after admission, are associated with poor 30 day neurologic function in adult OHCA survivors, which may suggest a contribution of NET formation to post-resuscitative brain damage and therefore provide a therapeutic target in the future.

Highlights

  • In cardiac arrest survivors good neurologic outcome remains difficult to achieve [1]

  • This study investigated whether early plasma neutrophil extracellular trap (NET) formation is associated with poor neurologic 30 day function following successful out-of-hospital resuscitation

  • The study was built on previous data suggesting a possible role of neutrophils in the development of post-resuscitative organ damage and was driven by the hypothesis that excessive NET release upon ischemic reperfusion may contribute to cerebral micro-circulatory compromise and neurologic disability in cardiac arrest survivors [5,6,7,8]

Read more

Summary

Introduction

In cardiac arrest survivors good neurologic outcome remains difficult to achieve [1]. Brain injury does not occur solely during circulatory interruption, but may progress during the reperfusion period after sustained return of spontaneous circulation (ROSC) [2]. Recent data suggest that the response of neutrophils to hypoxia could be an early and critical mediator of ischemic reperfusion injury [5]. This is consistent with previous studies reporting substantial mortality and neurologic morbidity in resuscitated cardiac arrest patients with an elevated number of blood neutrophils in relation to other leukocyte counts [6,7,8]. The mechanisms by which neutrophils may contribute to post-resuscitative brain damage have, not yet been elucidated

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call