Abstract

Emerging data indicate that gut-derived endotoxin (metabolic endotoxemia) may contribute to low-grade systemic inflammation in insulin-resistant states. Specific gut bacteria seem to serve as lipopolysaccharide (LPS) sources and several reports claim a role for increased intestinal permeability in the genesis of metabolic disorders. Therefore, we investigated the serum levels of LPS and zonulin (ZO-1, a marker of gut permeability) along with systemic levels of tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) in patients with type 2 diabetes mellitus (T2DM) compared to control subjects. Study subjects were recruited from the Chennai Urban Rural Epidemiology Study [CURES], Chennai, India. Study group (n=45 each) comprised of a) subjects with normal glucose tolerance (NGT) and (b) patients with T2DM. LPS, ZO-1, TNF-α, and IL-6 levels were measured by ELISA. Serum levels of LPS [p<0.05], LPS activity [p<0.001], ZO-1 [p<0.001], TNFα [p<0.001], and IL-6 [p<0.001] were significantly increased in patients with T2DM compared to control subjects. Pearson correlation analysis revealed that LPS activity was significantly and positively correlated with ZO-1, fasting plasma glucose, 2h post glucose, HbA1c, serum triglycerides, TNF-α, IL-6, and negatively correlated with HDL cholesterol. Regression analysis showed that increased LPS levels were significantly associated with type 2 diabetes [odds ratio (OR) 13.43, 95% CI 1.998-18.9; p=0.003]. In Asian Indians who are considered highly insulin resistant, the circulatory LPS levels, LPS activity, and ZO-1 were significantly increased in patients with type 2 diabetes and showed positive correlation with inflammatory markers and poor glycemic/lipid control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.