Abstract
Endometriosis is a gynecologic disease common among reproductive-aged women caused by the growth of endometrial tissue outside the uterus. Altered expression of numerous genes and microRNAs has been reported in endometriosis. Steroidogenic factor 1 (SF-1), an essential transcriptional regulator of multiple genes involved in estrogen biosynthesis, is aberrantly increased and plays an important role in the pathogenesis of endometriosis. Here, we show the expression of SF-1 in endometriosis is regulated by miR-370-3p. Sera and tissue were collected from 20 women surgically diagnosed with endometriosis and 26 women without endometriosis. We found that miR-370-3p levels were decreased in the serum of patients with endometriosis while SF-1 mRNA levels were inversely upregulated in endometriotic lesions compared with respective controls. Transfection of primary endometriotic cells with miR-370-3p mimic or inhibitor resulted in the altered expression of SF-1 and SF-1 downstream target genes steroidogenic acute regulatory protein (StAR) and CYP19A1. Overexpression of miR-370-3p inhibited cell proliferation and induced apoptosis in endometriotic cells. This study reveals that miR-370-3p functions as a negative regulator of SF-1 and cell proliferation in endometriotic cells. We suggest a novel therapeutic strategy for controlling SF-1 in endometriosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Endocrinology and metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.