Abstract
Previous research has shown that production of the high levels of oxidants overwhelms the body's antioxidant defense system during diabetes mellitus. Under this circumstance, ocular lens proteins are one of the main molecular targets for oxidative damage. In the present study, the individual effect of partial and extensive oxidation on the structure and function of human αB-crystallin was investigated using electrophoresis and various spectroscopic methods. The results of our study suggested that widespread oxidation causes loss of the chaperone activity of this protein, while partial oxidation significantly enhances this activity. Our studies also suggested that partial and extensive oxidation induces the formation of different structures in this protein. In fact, the chaperone-active and chaperone-inactive states of this protein are respectively associated with a minor and extensive structural alteration. Moreover, the oligomeric size distribution shows an inverse relationship with the chaperone activity of this protein. Increasing the chaperone activity of this protein during partial oxidation may be a natural defense mechanism to overcome the damages caused by oxidative stress, especially in diabetes and other pathological diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.