Abstract

Based on cellulose biosynthesis pathway of Gluconacetobacterxylinus BPR2001 and E. coli Nissle 1917, bcsA and bcsB genes have been selected and bioinformatics studies done to the analyses of nucleotide and amino acid sequence alignment, stability of RNA, protein, and promotor power. We amplify and clone bcsA, bcsB, and bcsAB genes of G. xylinus BPR2001 in Escherichiacoli Nissle 1917 under the inducible tac promoter. Our results of bioinformatics predictions demonstrate similar active site and three-dimensional structure of BcsA and BcsB proteins in two different bacteria. In addition, our data reveal that BcsA and BcsB proteins of E. coli have weaker promotor power, RNA secondary structure, and protein stability than that of the same proteins in G. xylinus. Some of the reasons of BcsAB protein selection from G. xylinus and its heterologous expression in E. coli is the noted points. Production of the related proteins visualized using SDS-PAGE. We find out that Congo red absorbance at 490nm has no significant difference in wild-type strain (E. coli Nissle 1917) compared to recombinants bcsA+ or bcsB+, but recombinant bcsAB+ could produce more cellulose than that of the wild-type strain. Furthermore, the measurement of cellulose dry weights of all samples confirms bacterial cellulose production enhancement in recombinant bcsAB+ (1.94gl-1). The FTIR analysis reveals that the crystallinity indices do not change significantly after over expressing each of genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.