Abstract

Background context During disc degeneration, there is a well-recognized loss of cells. This puts the remaining cell population at high risk for any further decrease in cell function or cell numbers. Cell senescence has recently been shown to be present in the aging/degenerating human disc. Senescent cell are viable, metabolically active, persist, and accumulate over time, but cannot divide. Little is known about the relationship between renewal of the disc cell population via cell proliferation and disc cell senescence. Purpose To determine the percentage of senescent cells and proliferating cells in the human annulus in vivo. Study design/setting Human annulus specimens were obtained from surgical subjects and control donors in a study approved by the authors' Human Subjects Institutional Review Board. Patient sample One Thompson Grade I disc, 4 Grade II discs, 9 Grade III discs, and 12 Grade IV discs were studied. Outcome measures The percentages of senescent cells and the percentage of proliferating cells. Methods Immunohistochemistry was used to detect senescent cells using an antisenescence-associated beta-galactosidase antibody, and an antiproliferation antibody (Ki67). An average of 410 cells/specimens was counted to determine the percent senescence, and an average of 229 cells was counted to determine the percent proliferation. Results Cell proliferation was low in both surgical and control normal donor annulus tissue (4.09%+1.77 (26), mean+SD (n)). There was no significant difference in the percentage of proliferating cells for more degenerate discs versus healthier discs (4.7%+1.6 (21) for Grades III and IV vs. 5.3%+1.9 (5) for Grades I and II). More degenerated Grades III and IV discs contained significantly greater percentages of senescent annulus cells than did the healthier Grades I and II discs (44.4%+20.0 (21) vs. 18.8%+11.0 (5), respectively; p=.011). A significant negative correlation was present between the percentage of senescent cells versus the percentage of proliferating cells, r=−0.013, p=.013. No correlation was present between age and the percentage of senescent cells or age and the percentage of proliferating cells. Conclusions Because senescent cells cannot divide, senescence may reduce the disc's ability to generate new cells to replace cells lost to necrosis or apoptosis. Senescent cells also accumulate in the disc over time, such that their metabolic patterns may contribute to the pathologic changes seen in degenerating discs. Novel data presented here show a significant negative correlation between the percentage of senescent cells and the percentage of proliferating cells during disc degeneration. Molecular work is underway in our lab to help us determine whether senescent cells in the disc secrete factors that can result in decreased proliferation in neighboring cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.