Abstract

Compound single junction and multijunction solar cells enable very high photovoltaic efficiencies by virtue of employing different band gap materials in series-connected tandem cells to access the full solar spectrum. Researchers focused on improving the electrical properties of solar cells by optimizing the material growth conditions, however relatively little work to date has been devoted to light trapping and enhanced absorption in III-V compound solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film solar cells by means of numerical modeling. Flat dielectric and metal back reflectors that might be introduced into the solar cell via wafer-bonding, epitaxial lift-off or deposition techniques have been shown to increase the short circuit current and the photovoltaic efficiency of solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call