Abstract
The rev-erbA(alpha) gene, belonging to the steroid receptor superfamily of transcription factors, is highly conserved during evolution but little is known so far about its functions in development or in adult physiology. Here, we describe genetically altered mice lacking the rev-erbA(alpha) gene. These animals do not show any obvious phenotype in either fat tissue or skeletal muscle, despite the known regulation of rev-erbA(alpha) expression during adipocyte and myotube differentiation in vitro. However, during the second week of life, the cerebellum of rev-erbA(alpha) mutants presents several unexpected abnormalities, such as alterations in the development of Purkinje cells, delay in the proliferation and migration of granule cells from the external granule cell layer and increased apoptosis of neurons in the internal granule cell layer. Interestingly, the expression pattern of rev-erbA(alpha) suggests that the abnormalities observed in the external granule cell layer could be secondary to Purkinje cell alterations. Taken together, our data underline the importance of rev-erbA(alpha)expression for the appropriate balance of transcriptional activators and repressors during postnatal cerebellar development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.