Abstract
BackgroundHIV-HCV co-infection is associated with accelerated progression to hepatic fibrosis, cirrhosis and hepatocellular carcinoma than HCV mono-infection. The contribution of innate immunity during HIV-HCV co-infection has been a relatively under-investigated area. Natural killer (NK) cells are pivotal sentinels of innate immunity against viruses and tumour cells. In this study we evaluated the effect of HIV-HCV co-infection on peripheral blood NK cell subsets with emphasis on the phenotype of CD56bright NK cells.MethodsSixty patients were included in the study; HIV mono-infected (n = 12), HCV mono-infected (n = 15), HCV-HIV co-infected (n = 21) and healthy controls (n = 16). PBMCs were isolated and immunophenotyping of NK cells was performed by flowcytometry.ResultsWe observed an expansion of CD56bright NK cell subset in HIV-HCV co-infection as compared to healthy controls and HIV mono-infected group. All the infected groups had an upregulated expression of the activating receptor NKG2D on CD56bright NK cells in comparison to healthy controls while not differing amongst themselves.The expression of NKp46 in HIV-HCV co-infected group was significantly upregulated as compared to both HIV as well as HCV mono-infections while NKp30 expression in the HIV-HCV co-infected group significantly differed as compared to HIV mono-infection. The CD56bright NK cell subset was activated in HIV-HCV co-infection as assessed by the expression of CD69 as compared to healthy controls but was significantly downregulated in comparison to HIV mono-infection. CD95 expression on CD56bright NK cells followed the same pattern where there was an increased expression of CD95 in HIV mono-infection and HIV-HCV co-infection as compared to healthy controls. In contrast to CD69 expression, CD95 expression in HCV mono-infection was decreased when compared to HIV mono-infection and HIV-HCV co-infection. Finally, expression of CXCR3 on CD56bright NK cells was increased in HIV-HCV co-infection in comparison to HIV mono-infection while remaining similar to HCV mono-infection.ConclusionThus, HIV-HCV co-infection is able to modulate the phenotype of CD56bright NK cell subset in a unique way such that NKp46 and CXCR3 expressions are distinct for co-infection while both mono-infections have an additive effect on CD56bright, CD69 with CD95 expressions. HCV mono-infection has a dominant effect on NKp30 expression while NKG2D and CD127 expressions remained same in all the groups.
Highlights
HIV-HCV co-infection is associated with accelerated progression to hepatic fibrosis, cirrhosis and hepatocellular carcinoma than HCV mono-infection
As compared to mono-infections HIV-HCV co-infection had an upregulated expression of CD56brightCD16+/− Natural killer (NK) cells than HIV mono-infection only
HCV mono-infection showed a trend towards increased CD56brightCD16+/− NK cells, only HIV-HCV co-infection resulted in an increase that was significantly different from both healthy controls and HIV mono-infection (Fig. 1b)
Summary
HIV-HCV co-infection is associated with accelerated progression to hepatic fibrosis, cirrhosis and hepatocellular carcinoma than HCV mono-infection. The contribution of innate immunity during HIV-HCV coinfection has been a relatively under-investigated area. Natural killer (NK) cells are pivotal sentinels of innate immunity against viruses and tumour cells. In this study we evaluated the effect of HIV-HCV co-infection on peripheral blood NK cell subsets with emphasis on the phenotype of CD56bright NK cells. CD56bright NK cells have more regulatory functions by means of cytokine production while CD56dim NK cells are primarily cytolytic in function but produce significant amounts of cytokines when their activating receptors are engaged [5]. This distinction is not absolute [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.