Abstract

BackgroundPreceding intervertebral disc (IVD) degeneration, the cell phenotype in the nucleus pulposus (NP) shifts from notochordal cells (NCs) to chondrocyte-like cells (CLCs). Microarray analysis showed a correlation between caveolin-1 expression and the phenotypic transition of NCs to CLCs. With a clinical directive in mind, the aim of this study was to determine the role of caveolin-1 in IVD degeneration. As a scaffolding protein, caveolin-1 influences several signaling pathways, and transforming growth factor (TGF)-β receptors have been demonstrated to colocalize with caveolin-1. Therefore, the hypothesis of this study was that caveolin-1 facilitates repair by enhancing TGF-β signaling in the IVD.MethodsProtein expression (caveolin-1, apoptosis, progenitor cell markers, extracellular matrix, and phosphorylated Smad2 [pSmad2]) was determined in IVDs of wild-type (WT) and caveolin-1-null mice and canine IVDs of different degeneration grades (immunofluorescence, immunohistochemistry, and TUNEL assay). Canine/human CLC microaggregates were treated with chondrogenic medium alone or in combination with caveolin-1 scaffolding domain (CSD) peptide and/or caveolin-1 silencing RNA. After 28 days, gene and protein expression profiles were determined.ResultsThe NP of WT mice was rich in viable NCs, whereas the NP of caveolin-1-null mice contained more collagen-rich extracellular matrix and fewer cells, together with increased progenitor cell marker expression, pSmad2 TGF-β signaling, and high apoptotic activity. During canine IVD degeneration, caveolin-1 expression and apoptotic activity increased. In vitro caveolin-1 silencing decreased the CLC microaggregate glycosaminoglycan (GAG) content, which could be rescued by CSD treatment. Furthermore, CSD increased TGF-β/pSmad2 signaling at gene and protein expression levels and enhanced the anabolic effects of TGF-β1, reflected in increased extracellular matrix deposition by the CLCs.ConclusionsCaveolin-1 plays a role in preservation of the NC phenotype. Additionally, it may be related to CLC apoptosis, given its increased expression in degenerated IVDs. Nevertheless, CSD enhanced CLC GAG deposition in vitro, and hence the increased caveolin-1 expression during IVD degeneration may also facilitate an ultimate attempt at repair. Further studies are needed to investigate how caveolin-1 modifies other signaling pathways and facilitates IVD repair.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-016-0960-y) contains supplementary material, which is available to authorized users.

Highlights

  • Preceding intervertebral disc (IVD) degeneration, the cell phenotype in the nucleus pulposus (NP) shifts from notochordal cells (NCs) to chondrocyte-like cells (CLCs)

  • In the caveolin-1-null mice, GAGs and collagen type II were abundantly present in the extracellular matrix (ECM), whereas they were present to a lesser extent in WT NPs (Fig. 2)

  • The present study demonstrates that caveolin-1 plays a role in IVD degeneration

Read more

Summary

Introduction

Preceding intervertebral disc (IVD) degeneration, the cell phenotype in the nucleus pulposus (NP) shifts from notochordal cells (NCs) to chondrocyte-like cells (CLCs). Microarray analysis showed a correlation between caveolin-1 expression and the phenotypic transition of NCs to CLCs. With a clinical directive in mind, the aim of this study was to determine the role of caveolin-1 in IVD degeneration. The hypothesis of this study was that caveolin-1 facilitates repair by enhancing TGF-β signaling in the IVD. Low back pain is strongly related to intervertebral disc (IVD) degeneration [2]. Dogs experience spontaneous IVD degeneration with similar characteristics [3]. In both species, notochordal cells (NCs) are replaced by chondrocyte-like cells (CLCs) in the NP during maturation and early IVD degeneration. Caveolin-1 could be such an agent, as its advantageous effects have been demonstrated in several tissue types [6,7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.