Abstract

Septic shock is a complex pathophysiologic state characterized by circulatory insufficiency, multiple system organ dysfunction, and frequent mortality. Although profound cardiac dysfunction occurs during sepsis, the pathogenesis of this dysfunction remains poorly understood. To determine whether abnormalities in intramyocyte calcium accumulation might contribute to the development of cardiac dysfunction, we measured myocyte intracellular calcium during peak cardiac dysfunction after an endotoxin challenge. Intraperitoneal administration of Escherichia coli lipopolysaccharide 4 mg/kg to adult guinea pigs resulted in significantly impaired cardiac performance (Langendorff preparation) 18 h after challenge compared with control. This included diminished left ventricular pressure development (56 +/- 7 versus 95 +/- 4 mm Hg, p < 0.05), maximal rate of left ventricular pressure rise (998 +/- 171 versus 1784 +/- 94 mm Hg/s, p < 0.05) and left ventricular pressure fall (1014 +/- 189 versus 1621 +/- 138 mm Hg/s, p < 0.05). Assay of intracellular calcium in fura-2AM-loaded cardiac myocytes demonstrated increased intracellular calcium concentration in myocytes obtained from lipopolysaccharide-challenged animals compared with controls (234 +/- 18 versus 151 +/- 6 nM, p < 0.05). Inhibition of calcium-release channel (ryanodine receptor) opening by administration of dantrolene prevented the increase in intracytoplasmic calcium (159 +/- 8 versus 234 +/- 18 nM, p < 0.05) and partially ameliorated systolic and diastolic ventricular dysfunction. These data indicate that abnormalities of intracellular calcium contribute to the development of endotoxin-induced myocardial dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.