Abstract
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) has been demonstrated to increase in healthy humans during a variety of conditions; however, whether or not this blood flow represents a source of venous admixture (Q̇ VA /Q̇T) that impairs pulmonary gas exchange efficiency (i.e. increases the alveolar-to-arterial PO2 difference (A-aDO2)) remains controversial and unknown. We hypothesized that blood flow through IPAVAs does provide a source of Q̇ VA /Q̇T. To test this, blood flow through IPAVAs was increased in healthy humans at rest breathing room air and 40% O2: (1) during intravenous adrenaline (epinephrine) infusion at 320ngkg(-1)min(-1) (320ADR), and (2) with vagal blockade (2mg atropine), before and during intravenous adrenaline infusion at 80ngkg(-1)min(-1) (ATR+80ADR). When breathing room air the A-aDO2 increased by 6±2mmHg during 320ADR and by 5±2mmHg during ATR+80ADR, and the change in calculated Q̇ VA /Q̇T was +2% in both conditions. When breathing 40% O2, which minimizes contributions from diffusion limitation and alveolar ventilation-to-perfusion inequality, the A-aDO2 increased by 12±7mmHg during 320ADR, and by 9±6mmHg during ATR+80ADR, and the change in calculated Q̇ VA /Q̇T was +2% in both conditions. During 320ADR cardiac output (Q̇T) and pulmonary artery systolic pressure (PASP) were significantly increased; however, during ATR+80ADR only Q̇T was significantly increased, yet blood flow through IPAVAs as detected with saline contrast echocardiography was not different between conditions. Accordingly, we suggest that blood flow through IPAVAs provides a source of intrapulmonary shunt, and is mediated primarily by increases in Q̇T rather than PASP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.