Abstract

Microbial electrosynthesis is a bioprocess where microbes reduce CO2 into multicarbon chemicals with electrons derived from the cathode of a bioelectrochemical reactor. Developing a highly productive microbial electrosynthesis reactor requires excellent electrical connection between the electrochemical setup, the cathode, and the microbes. Copper is a highly conductive cathode material widely employed in electrochemical apparatuses. However, the antimicrobial properties of copper limit its usage for bioelectrochemistry. Here, biocompatible reduced graphene oxide coated on copper foam is synthesized as a cathode material for the microbial electrosynthesis of acetate from CO2. Dense and electroactive Sporomusa ovata biofilms form on the surface of reduced graphene oxide-coated copper foam electrodes while only scattered and damaged cells cover uncoated copper electrodes. Besides the formation of metabolically-active biofilms, acetate production rate from CO2 is 21.3 and 43.5-fold higher with this novel composite cathode compared with an uncoated copper foam cathode and a reversed cathode made of reduced graphene oxide foam coated with copper, respectively. The results demonstrate that reduced graphene oxide can be employed as a biocompatible and conductive buffer between microbes and bactericidal electrode materials with excellent electrochemical property to enable highly performant microbial electrosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.