Abstract

To investigate mechanisms that mediate the greater food intake induced by a fat-rich diet, the present study tested an acute “preload-to-test meal” paradigm in normal-weight rats. In this paradigm, the rats were given a small high-fat (HF) compared to low-fat (LF) preload and, after an intermeal interval, allowed to consume freely on a subsequent test meal. Modified versions of this paradigm were tested to determine the robustness of the greater caloric intake induced by the HF preload while standardizing the test protocol. A HF preload of 10–15 kcals, compared to an equicaloric LF preload, significantly increased food intake by 40–50% in the subsequent test meal. This effect, a 4–6 kcal increase, was observed with HF preloads equal in energy density and palatability to the LF preloads. It was evident with preloads or test meals that were liquid or solid, preloads that were injected, test meals that had variable fat content, and natural intermeal intervals of 60–120 min. This overeating after a HF preload was invariably associated with a 2- to 3-fold increase in circulating levels of triglycerides (TG), with no change in leptin or insulin. It was also accompanied by increased expression of the orexigenic peptides, galanin in the paraventricular nucleus and orexin in the perifornical lateral hypothalamus. Moreover, if given repeatedly over several days, the HF compared to equicaloric LF preload significantly increased 24-h food intake. These results establish a protocol for studying the phenomenon of increased feeding on a HF diet under controlled conditions and suggest possible underlying mechanisms involving circulating lipids and orexigenic peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.