Abstract

The effects of activating protein kinase C (PKC) with indolactam V (Indo-V) and 1,2-dioctanoyl-sn-glycerol (DOG) on smooth muscle intracellular Ca2+ concentrations ([Ca2+]i) and arterial diameter were determined using ratiometric Ca2+ imaging and video edge detection of pressurized rat posterior cerebral arteries. Elevation of intraluminal pressure from 10 to 60 mmHg resulted in an increase in [Ca2+]i from 74 +/- 5 to 219 +/- 8 nM and myogenic constriction. Application of Indo-V (0.01-3 microM) or DOG (0.1-30 microM) induced constriction and decreased [Ca2+]i to 140 +/- 11 and 127 +/- 12 nM, respectively, at the highest concentrations used. In the presence of Indo-V, the dihydropyridine Ca2+-channel-blocker nisoldipine produced nearly maximum dilation and decreased [Ca2+]i to 97 +/- 7 nM. In alpha-toxin-permeabilized arteries, the constrictor effects of Indo-V and DOG were not observed in the absence of Ca2+. Both PKC activators significantly increased the degree of constriction of permeabilized arteries at different [Ca2+]i. We conclude that 1) Indo-V- or DOG-induced constriction of pressurized arteries requires Ca2+ influx through voltage-dependent Ca2+ channels, and 2) PKC-induced constriction of pressurized rat cerebral arteries is associated with a decrease in [Ca2+]i, suggesting an increase in the Ca2+ sensitivity of the contractile process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.