Abstract

Cardiac ryanodine receptor (RyR2) mutations are associated with autosomal dominant catecholaminergic polymorphic ventricular tachycardia, suggesting that alterations in Ca(2+) handling underlie this disease. Here we analyze the underlying Ca(2+) release defect that leads to arrhythmia in cardiomyocytes isolated from heterozygous knock-in mice carrying the RyR2(R4496C) mutation. RyR2(R4496C-/-) littermates (wild type) were used as controls. [Ca(2+)](i) transients were obtained by field stimulation in fluo-3-loaded cardiomyocytes and viewed using confocal microscopy. In our basal recording conditions (2-Hz stimulation rate), [Ca(2+)](i) transients and sarcoplasmic reticulum Ca(2+) load were similar in wild-type and RyR2(R4496C) cells. However, paced RyR2(R4496C) ventricular myocytes presented abnormal Ca(2+) release during the diastolic period, viewed as Ca(2+) waves, consistent with the occurrence of delayed afterdepolarizations. The occurrence of this abnormal Ca(2+) release was enhanced at faster stimulation rates and by beta-adrenergic stimulation, which also induced triggered activity. Spontaneous Ca(2+) sparks were more frequent in RyR2(R4496C) myocytes, indicating increased RyR2(R4496C) activity. When permeabilized cells were exposed to different cytosolic [Ca(2+)](i), RyR2(R4496C) showed a dramatic increase in Ca(2+) sensitivity. Isoproterenol increased [Ca(2+)](i) transient amplitude and Ca(2+) spark frequency to the same extent in wild-type and RyR2(R4496C) cells, indicating that the beta-adrenergic sensitivity of RyR2(R4496C) cells remained unaltered. This effect was independent of protein expression variations because no difference was found in the total or phosphorylated RyR2 expression levels. In conclusion, the arrhythmogenic potential of the RyR2(R4496C) mutation is attributable to the increased Ca(2+) sensitivity of RyR2(R4496C), which induces diastolic Ca(2+) release and lowers the threshold for triggered activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.