Abstract

Activation of the complement system is an important part of host resistance against fungal infections. When human monocytes, cultured for 2 days or more, were treated in vitro with Candida albicans for 24 h, an enhancement of their biosynthesis of the complement components C3 and factor B was found. However, when C. albicans was administered to freshly isolated monocytes, a consistent stimulation of factor B biosynthesis occurred, while the C3 production was increased in about 50% of the donors. C. albicans also induced the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) from the cultured cells, apparently in larger amounts in the donors in whom no stimulation of C3 production was found. An antibody to GM-CSF administered with the yeast at the initiation of the monocyte culture caused an increase in the C3 production. Furthermore, when monocytes were treated with recombinant human GM-CSF either at the same time as or 4 days prior to the addition of C. albicans, the increase in C3 production was suppressed or neutralized, while factor B biosynthesis was unaffected. Taken together, these results indicate that monocytes respond to C. albicans with an increased production of complement factors. This may be an important mechanism both for opsonization of the fungus and for initiation of an inflammatory reaction. At an inflammatory site, this complement response may be suppressed by locally produced GM-CSF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.