Abstract
Dynamic cerebral autoregulation, that is the transient response of cerebral blood flow to changes in arterial blood pressure, is currently assessed using a variety of different time series methods and data collection protocols. In the continuing absence of a gold standard for the study of cerebral autoregulation it is unclear to what extent does the assessment depend on the choice of a computational method and protocol. We use continuous measurements of blood pressure and cerebral blood flow velocity in the middle cerebral artery from the cohorts of 18 normotensive subjects performing sit-to-stand manoeuvre. We estimate cerebral autoregulation using a wide variety of black-box approaches (including the following six autoregulation indices ARI, Mx, Sx, Dx, FIR and ARX) and compare them in the context of reproducibility and variability. For all autoregulation indices, considered here, the intra-class correlation was greater during the standing protocol, however, it was significantly greater (Fisher’s Z-test) for Mx (p < 0.03), Sx (p < 0.003) and Dx (p < 0.03). In the specific case of the sit-to-stand manoeuvre, measurements taken immediately after standing up greatly improve the reproducibility of the autoregulation coefficients. This is generally coupled with an increase of the within-group spread of the estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.